8 ПОСТРОЕНИЕ ЭПЮР ПОПЕРЕЧНЫХ СИЛ И ИЗГИБАЮЩИХ МОМЕНТОВ ДЛЯ КОНСОЛЬНОЙ БАЛКИ (ЗАДАНИЕ 7)

8.1 Для заданной схемы 1-10 (рисунок 14) требуется написать выражение поперечной силы Q и изгибающего момента M для каждого участка, построить эпюры Q и M, найти максимальный момент M_{max} , подобрать стальную балку заданного сечения при $[\sigma] = 160$ МПа. Исходные данные взять из таблицы 5.

Таблица 5- Исходные данные.

Варианты	а, м	В, М	F, ĸH	т, кНм	q, кН/м	Сечение
1	1,2	3,0	2	16	2	
2	1,4	2,8	4	18	2,5	
3	1,6	2,6	6	20	3	
4	1,8	2,4	8	22	3,5	
5	2,0	2,2	10	24	4	
6	2,2	2,0	12	26	4,5	
7	2,4	1,8	2	14	5	
8	2,6	1,6	4	16	2,5	
9	2,8	1,4	6	18	3	
10	3.0	1,2	8	20	3,5	

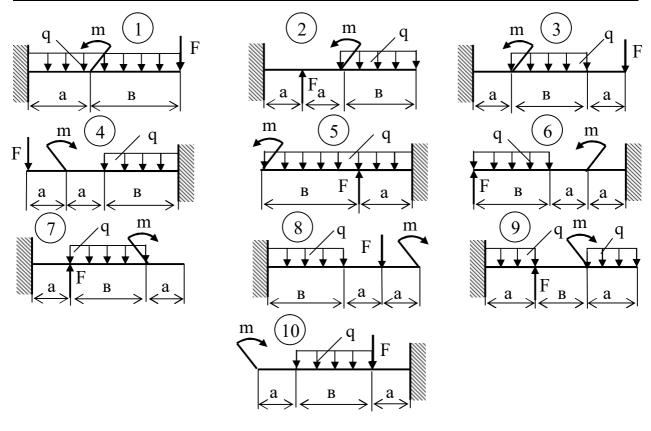
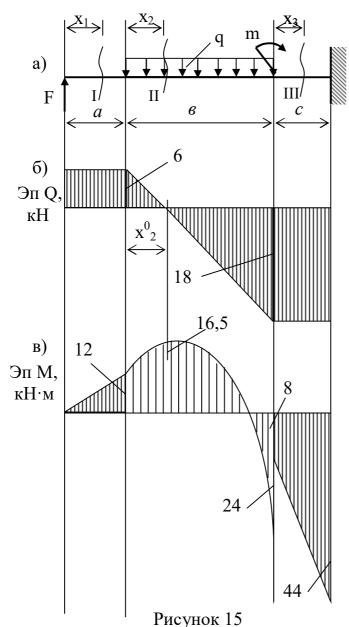



Рисунок 14

8.2 Пример выполнения задания 7

Исходные данные:

F = 6 кH; q = 4 кH/м; m = 16 кНм; a = 2 м; $\epsilon = 6$ м; c = 2 м; $[\sigma] = 160$ МПа; поперечное сечение балки — двутавр.

Решение. 1) Разбиваем всю балку на участки, в пределах которых действие внешних сил, приложенных к балке, постоянно. Т.о. балка получилась разбитой на три участка (рисунок 15 а).

Принимаем следующее правило знаков:

$$Q > 0 \qquad \qquad Q < 0 \qquad \qquad \frac{n}{n}$$

$$M < 0 \qquad \qquad M < 0 \qquad \qquad m$$

2) Составим уравнения для поперечной силы и изгибающего момента на каждом участке. Проведем произвольное сечение I-I на первом участке и, отбросив правую часть от сечения, рассмотрим равновесие левой части.

Граница сечения І-І: $0 \le x_1 \le 2$

$$Q_1 = \Sigma \, F_{iy} = F = 6 \, \mathrm{kH}.$$
 $M_1 = \Sigma \, M(F_i) = F \cdot x_I;$ при $x_1 = 0 \, M_1 = 0;$ при $x_1 = 2 \, M_1 = 6 \cdot 2 = 12 \, \mathrm{kHm}.$

Далее выполняем подобные операции.

Граница сечения II-II: $0 \le x_2 \le 6$

$$Q_2 = F - q \cdot x_2$$
; при $x_2 = 0$ $Q_2 = 6 - 4 \cdot 0 = 0$, при $x_2 = 6$ $Q_2 = 6 - 4 \cdot 6 = -18$ кН. $M_1 = F \cdot (2 + x_2) - q \cdot x^2 / 2$; при $x_2 = 0$ $M_2 = 6 \cdot 2 - 4 \cdot 0 = 12$ кНм, при $x_2 = 6$ $M_2 = 6 \cdot (2 + 6) - 4 \cdot 6^2 / 2 = -24$ кНм.

Так как эпюра Q на втором участке проходит через нейтральную линию, меняя знак с «+» на «-», то в сечении, где Q равна нулю, значение изгибающего момента M будет иметь максимальную величину. Чтобы найти его, определим значение координаты x^0_2 , при котором $Q_2 = 0$.

$$Q_2=F-q\cdot x^0{}_2=0$$
, откуда $x^0{}_2=F/q=6/4=1$,5 м при $x^0{}_2=1$,5 $M_2=6\cdot (2+1,5)$ - $4\cdot 1,5^2/2=16$,5 кНм.

Учитывая, что эпюра M описывается уравнением второго порядка на этом участке, она ограничивается кривой.

Граница сечения III-III: $0 \le x_3 \le 2$

$$Q_3 = F - q \cdot 6 = 6 - 4.6 = -18$$
 кН.

$$M_3 = F \cdot (2 + 6 + x_3) - q \cdot 6 (3 + x_3) + m;$$
 при $x_3 = 0$ $M_3 = 6 \cdot 8 - 4 \cdot 6 \cdot 3 + 16 = -8$ кНм, при $x_3 = 2$ $M_3 = 6 \cdot 10 - 4 \cdot 6 \cdot 5 + 16 = -44$ кНм.

Эпюры Q и M приведены на рисунке 15 б, в.

3) Сечение балки подбираем по условию прочности при изгибе.

$$\sigma_{\max} = |M|_{\max} / \ W \le [\sigma], \text{ откуда}$$
 $W \ge |M|_{\max} / [\sigma] = 44 \cdot 10^6 / 160 = 275 \cdot 10^3 \text{ мм}^3 = 275 \text{ см}^3.$

По полученному значению W из таблицы 6 сортамента прокатной стали, выбираем двутавр № 24, для которого $W = 289 \text{ cm}^3$.

8.3 Нормативно-справочные данные к расчету задания 7.

Таблица 6- Стандартный профиль.

	Шве	ллеры	Двутавры		
Номер	Площадь	Момент	Площадь	Момент	
профиля	поперечного	сопротивления	поперечного	сопротивления	
профили	сечения, см2	при изгибе	сечения, см2	при изгибе	
		W, cm ³		W, cm ³	
5	6,16	9,1	-	-	
6,5	7,51	15	-	-	
8	8,98	22,4	-	-	
10	10,9	34,8	12	39,7	
12	13,3	50,6	14,7	54,8	
14	15,6	70,2	17,4	81,7	
16	18,1	93,4	20,2	109	
18	20, 7	121	23,4	143	
20	23,4	152	26,8	184	
22	26,7	192	30,6	232	
24	30,6	242	34,8	289	
27	35,2	308	40,2	371	
30	40,5	387	46,5	472	
33	46,5	484	53,8	597	
36	53,4	601	61,9	743	
40	61,5	767	72,6	953	
45	_	-	84,7	1231	
50	_	-	100	1589	